Effects of Aging and Environment on Fatigue Crack Growth in Precipitation Hardened Al-Cu-Mg

نویسنده

  • Daoming Li
چکیده

Artificial aging degrades the fatigue crack growth (FCG) resistance of heat treatable aluminum alloys, particularly in the near-threshold regime. Consequently, applications of aluminum alloys in tensiondominated structures that require fatigue damage tolerance are limited to the naturally aged T3 temper. Degraded FCG resistance compromises the benefit from higher strength by artificial aging. While studies on the effect of aging on FCG in 2xxx series aluminum alloys are limited, mechanisms of fatigue damage and crack growth primarily based on investigations of 7xxx-series alloys involve interactive, competitive and highly localized (at the crack-tip) processes including (a) cyclic deformation structure and plastic strain accumulation, (b) environmental interaction, (c) roughness and corrosion product-induced closure, and (d) crack deflection and path tortuosity. FCG in aluminum alloys is enhanced by exposure to moist air, likely due to production of embrittling H by crack-tip reaction of water vapor with aluminum. Studies recognized the importance of environment, but have not included systematic studies of FCG in varying tempers of the same alloy exposed to different-controlled environments. Ultra-high vacuum conditions are particularly important in this regard given the reactivity of aluminum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CORROSION FATIGUE CRACK PROPAGATION AND INHIBITION IN Al-Zn-Mg-Cu VS Al-Cu-Mg/Li ALLOYS

Age-hardenable aluminum alloys used in aerospace structures are susceptible to environment assisted fatigue crack propagation (EFCP), limiting component durability and safety. The objective is to quantitatively understand EFCP and its inhibition for important aerospace alloys: 7075-T651 (Al-Zn-Cu-Mg), C433-T3 (Al-Cu-Mg), and C47A-T86 (AlCu-Li). EFCP is understood through the hydrogen embrittlem...

متن کامل

Probability Approach for Prediction of Pitting Corrosion Fatigue Life of Custom 450 Steel

In this study, the pitting type of corrosion growth characteristics, fatigue crack initiation and propagation behavior; axial fatigue tests were carried out on precipitation hardened martensitic Custom 450 steel in the air and 3.5wt% NaCl solution. Using the ratio of the depth to the half-width of the pits; (a/c)= 1.5±0.2 the corrosion pit depth growth law was obtained as a function of stress a...

متن کامل

Fatigue Behaviour in Fine Grained Aluminium Alloys

The effects of alloy production method on microstructure and hence fatigue crack growth rate and fracture mechanism have been examined for a variety of fine-grained/high dispersoid Al-Li-Mg-Zr and Al-Li-Cu-Mg-Zr alloys. Microstructures have been assessed by scanning and transmission electron microcopy, together with electron back scattered diffraction pattern assessment. In these fine-grained/h...

متن کامل

Assessment of mixed mode loading on macroscopic fatigue crack paths in thick section Al-Cu-Li alloy plate

High strength, wrought 7xxx (Al-Zn-Mg) and Al-Li based alloys show a propensity for fatigue macroscopic crack deflections aligned along grain boundaries. The present work reports a study on a 3 rd generation Al-Li based alloy in the form of a thick AA2297 (Al-Cu-Li alloy) plate, where it was found that although the lithium containing material may indeed be more susceptible to mixed mode grain b...

متن کامل

Modeling of Corrosion-Fatigue Crack Growth Rate Based on Least Square Support Vector Machine Technique

Understanding crack growth behavior in engineering components subjected to cyclic fatigue loadings is necessary for design and maintenance purpose. Fatigue crack growth (FCG) rate strongly depends on the applied loading characteristics in a nonlinear manner, and when the mechanical loadings combine with environmental attacks, this dependency will be more complicated. Since, the experimental inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003